- Chapter 1. The Genesis of Fourier Analysis
- Chapter 2. Basic Properties of Fourier Series
- Chapter 3. Convergence of Fourier Series
Chapter 1. The Genesis of Fourier Analysis
- 简谐振动(基于弹簧)
- 力\(F=-ky(t)\),\(k\)表示弹性系数,\(t\)为时间
- 应用牛顿第二定律后得\(-ky(t)=my''(t)\),可简化成\(y''(t)+c^{2}y(t)=0\)的形式
- 该微分方程的一般解为\(y(t)=a\cos(ct)+b\sin(ct)\),且该解为唯一二次可微的解
如何证明?
- 求解匀质弹性线段的波动方程\(u(x,t)\)
- 该线段两端点坐标为\(x=0\)和\(x=L\)
- 分为\(N\)段,每段长度为\(h\)
- 假设线段密度为\(\rho\),根据牛顿第二定律,第\(n\)段所受作用力可以表示为\(\rho hy_{n}''(t)\)
-
设\(\tau>0\)为线段的张力系数(常数),第\(n\)段所受右边(左边类似)相邻段的张力和\((y_{n+1}-y_{n})/h\)成正比,这样该段所受左右两边的张力和为
\[\frac{\tau}{h}\{y_{n+1}(t)+y_{n-1}(t)-2y_{n}(t)\}\]其中\(y_{n}(t)=u(x_{n},t)\)
-
联立上述两式得
\[\rho hy_{n}''(t)=\frac{\tau}{h}\{y_{n+1}(t)+y_{n-1}(t)-2y_{n}(t)\}\] -
令\(h\to0\)取极限有
\[\rho\frac{\partial^{2}u}{\partial t^{2}}=\tau\frac{\partial^{2}u}{\partial x^{2}}\]这就是one-dimentional wave equation
- 求解上述wave equation的两种方法